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Abstract
We show that quasi-bound electron states are formed in a quantum wire as
a result of electron backscattering in the transition regions between the wire
and the electron reservoirs, to which the wire is coupled. The backscattering
mechanism is caused by electron density oscillations arising even in smooth
transitions due to the reflection of electrons not transmitting through the
wire. The quasi-bound states reveal themselves in resonances of the electron
transmission probability through the wire. The calculations were carried out
within the Hartree–Fock approximation using quasi-classic wavefunctions.

Quantum point contacts (QPCs) and quantum wires (QWs) have attracted much interest as
model systems for studying the effects of electron–electron interaction in one-dimensional
(1D) systems. The conductance of these devices is known [1, 2] to be quantized according
to a universal law, G = 2ne2/h, where n = 1, 2, 3 . . ., which was successfully explained
within the model of noninteracting electrons [3, 4]. However, recent experiments have revealed
a lot of other features of the conductance which are yet unexplained. Widely discussed is
the 0.7 anomaly [5]. Besides, such observations as strongly nonlinear conductance at low
applied voltage [6], additional plateau-like features [7] and even resonances in the differential
conductance [7–10] are also of interest. It is obvious that these features are caused by the
electron–electron interaction, but only electron–electron interaction in the 1D system fails to
explain them. Of no less importance is the fact that a 1D wire is coupled to 2D electron
reservoirs and hence there are transition regions between the 1D QW and the 2D reservoirs
(1D–2D junctions). The most puzzling result found recently is electron localization in the
QPC, which was first brought to light from the studies of the 0.7 plateau-like feature in
short QWs. Cronenwett et al [11] related this feature to the Kondo effect caused by the
electron spin localization in the QW. The most convincing evidence of electron localization
was provided by the momentum-resolved tunnelling experiments of Auslaender et al [12].
Peaks and kinks in conductance dependences on the gate voltage observed in devices with
high electron mobility [8, 7, 9] implicitly also point to the presence of quasi-bound electron
states. The problem is that in all the experiments the electrons are localized over the barrier
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formed by the electrodes, the potential of which varies smoothly on the electron wavelength
scale. The localization mechanism remains unclear, but it is widely believed that the existence
of the quasi-bound states in the QW allows one to interpret the plateau-like features and the
resonances of the conductance. In [13], the quasi-bound states were related to local broadening
of the QW and formation of a potential well. To justify the formation of the quasi-bound states,
Hirose et al [14] calculated the electron density distribution in QPCs with geometric lengths of
the order of the Fermi wavelength. However, in the experiments the geometric sizes exceed the
Fermi wavelength noticeably, the barrier induced by the gates is rather smooth, and the over-
barrier reflection is negligible. Recently, Rejec and Meir [15] have demonstrated the presence
of quasi-bound states in the QPC by calculations based on spin-density functional theory, but
the underlying physical mechanism remains unknown.

Such a mechanism was suggested in [16]. The localization is a result of an intersubband
electron interaction in the 1D–2D transition regions. The interaction is caused by the Friedel
oscillations of the density of higher subband electrons, which do not pass through the transition
regions, and are reflected. The electrons of an open subband are backscattered by these
oscillations. Since the backscattering occurs in two opposed sides of the QW, quasi-bound
states are formed. When studying the backscattering in 1D–2D junctions the problem is the
complicated structure of the electron density distribution along the QW. Besides a smooth
component of the electron density there is an oscillating one, and it is just this component
that gives rise to the electron backscattering. An analytic theory of scattering by the Friedel
oscillations in the outside of the junction (the far zone), where the wavevector of the oscillations
is close to 2kF and the electrons with the Fermi energy are resonantly scattered, was developed
in [16]. But the scattering by nonperiodic oscillations of the electron density inside the
transition region (the near zone) may also be important, because the oscillation amplitude is
larger there. In this paper the electron backscattering in the smooth 1D–2D junctions is studied
within the Hartree–Fock approximation, taking into account both near and far zones. The
backscattering in the near zone turns out to contribute essentially to the total effect. It is found
that quasi-bound states are formed in the QW, giving rise to the transmission resonances.

Consider a QW in the form of a strip connecting 2D electron reservoirs with a given
electrochemical potential EF. The strip width, d(x), varies as follows:

d(x) =
{

d = const, |x | < a
d[1 + (|x | − a)2/R2], |x | > a,

(1)

where the broadening radius R considerably exceeds both d and k−1
F (kF is the Fermi

wavevector in the reservoirs). For simplicity, we assume that only the first subband is open.
The electrons in the higher subbands are reflected in the 1D–2D junctions.

The backscattering of electrons incident on the QW is calculated in a way similar to that
of [16] with two essential additions which are required to include the scattering process in
the near zone. First, in addition to the Friedel oscillations produced by closed subbands we
take into account the electron density oscillations produced by the first subband electrons
with energy below the potential landscape maximum in the QW, Um (figure 1(c)). These
electrons are reflected from the barrier, giving rise to electron density oscillations with the
wavevector ∼2

√
2mUm/h̄, which is close to 2kF. Hence, these oscillations can noticeably

contribute to the backscattering of the electrons passing through the QW. The second addition
is the self-consistent calculation of the smooth components of the potential and the electron
density distribution in the QW. The potential landscape along the QW axis is formed by
the transverse quantization energy and the smooth component of the Hartree potential. This
is important because in the near zone the potential landscape differs considerably from the
transverse quantization energy, as figure 1(c) shows.
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Figure 1. (a) Sketch of the device. (b) Effective 1D electron density. (c) Potential landscape and
subband energies. Solid lines—self-consistent relief U(x) of the first (1) and higher (2, 3) subband
bottoms; dashed lines—transverse quantization energies of the first (1′) and higher subbands.

The calculations are carried out in the following way. First, one-particle wavefunctions
are written in the adiabatic approximation as a product of transverse and longitudinal
wavefunctions,

�n(�r⊥, x) = φnx(�r⊥)ψn(x),

where n = 1, 2, . . . is the subband number, φnx(�r⊥) is a transverse wavefunction corresponding
to transverse quantization energy En(x). Second, effectively 1D equations are obtained for the
longitudinal wavefunctions ψn(x) by averaging the Hartree–Fock equations over transverse
coordinates with the weight φ∗

nx(�r⊥). As a result one obtains 1D Schrödinger equations with
effective 1D Hartree and exchange terms. Third, these equations are solved self-consistently
using perturbation theory. To zero order in the interaction, the wavefunctions are written in
the quasi-classic approximation. At this stage the problem is solved numerically using the
iteration procedure developed in [17]. The electron scattering is calculated in the first Born
approximation. The quasi-classic approximation is justified if the local wavelength of an
electron on the Fermi level is smaller than the characteristic spatial scale of the potential [18].
The adiabatic approximation and its application to similar structures were considered in detail
by Glazman et al [3, 19].

Thus, the zero-order wavefunctions for the closed states are

ψn,k(x) = 2

√
k

kn(x)
cos

[∫ x

an

dx ′kn(x
′)− π

4

]
, (2)
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where kn(x) is the wavevector of the longitudinal motion, k = limx→∞ kn(x) and an(k) is a
turning point. For electrons of the first subband with energy higher than the potential landscape
maximum, the zero-order wavefunction is

ψ1,k(x) =
√

k

k1(x)
exp

[
i
∫ x

0
dx ′ kn(x

′)
]
. (3)

The electron density in each subband, having been found using equations (2) and (3),
depends on the electrochemical potential in the reservoirs EF and the effective potential U n(x)
in the device. The density is a sum of two components: one is oscillating and the other varies
smoothly on the electron wavelength scale. Accordingly, the potential acting on the electrons
also has two similar components. A smooth component of the potential is calculated self-
consistently with the electron density using the technique developed in [17]. As a result, the
potential profile U n(x) (see figure 1) is obtained for each subband and is used to calculate
the wavevectors kn(x) in equations (2) and (3), kn(x) = √

k2 − 2mU n(x)/h2. A rapidly
oscillating component of the potential is considered as a perturbation, which scatters an electron
from a state |n, k〉 to |m, k ′〉. The scattering potential contains the Hartree and exchange
components: V̂ = V H + V̂ exc [16]. The Hartree potential acting on the first subband electrons
is

V H(x) =
∑

l

∫
dx ′ V H

1,l(x, x ′)ρl(x
′)−

∫
dx ′ V H

1,0(x, x ′)ρ0(x
′),

where ρl(x) is the electron density in the nth subband, ρ0(x) is the background charge density
and

Vnl(x, x ′) =
∫

V (�r , �r ′)|φnx(�r⊥)|2|φlx(�r ′
⊥)|2 d�r⊥ d�r ′

⊥,

Vn,0(x, x ′) =
∫

V (�r , �r ′)|φnx(�r⊥)|2 d�r⊥ d�r ′
⊥.

The exchange interaction is described by an operator, which has following form for the first
subband electrons:

V̂ excψ1,k(x) = −
∑

l

∫
dx ′ V exc

1,l (x, x ′)ρl(x, x ′)ψ1,k(x
′),

where ρn(x, x ′) is the density matrix and

V exc
n,m(x, x ′) =

∫
d�r⊥ d�r ′

⊥V (r, r′)φnx(�r⊥)φmx(�r⊥)φnx(�r ′
⊥)φmx(�r ′

⊥).

Here, V (r, r′) is the pair interaction potential. The screening of the Coulomb interaction is
taken into account similarly to [17], assuming that the screening is produced by a conducting
plane (gate) situated over the device at a distance D or/and by the reservoirs, deep inside which
the potential is fixed. In specific calculations the potential is taken to be constant at a distance
±L/2 from the centre of the QW. The reflection amplitude for electrons in the open subband
(i.e., for the (1, k) → (1,−k) transition) is calculated in the Born approximation:

rk = m

ih̄2

∫
dx ψ∗

1,k V̂ψ1,k .

The main results obtained are shown in figures 2–4, where the reflection coefficient |r |2 of
the electrons incident on the QW is shown as a function of the electron energy measured from
the potential landscape maximum for a variety of device parameters. One sees the resonant
behaviour of the electron reflection. At some energies the reflectance strongly diminishes, and
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Figure 2. Reflection coefficient for different geometric sizes: (a) the widening radius R is varied
at a = 150 nm, D = 600 Å, EF = 9 meV; (b) the length 2a of the uniform part is varied at
R = 135 nm, D = 900 Å, EF = 9 meV. For a = 150 nm (solid line), transmission resonances
at energies 0.2 and 0.42 meV are caused by second and third quasi-bound states in the QW. For
a = 225 nm (dotted line) the transmission resonances correspond to third and fourth states.

Figure 3. Reflection coefficient for different distances to the screening gate D. The parameters
used are a = 150 nm; R = 135 nm; L = 1.5 μm; EF = 9 meV.

correspondingly the transmission resonantly increases. Calculations show that the resonance
energies are mainly determined by the geometric sizes of the device: the length of the uniform
part 2a and the broadening radius R. This is demonstrated in figure 2. The screening effect
on the reflectance is demonstrated by figure 3, where the reflectance spectra are shown for a
variety of the distances D between the QW and the screening electrode. This distance affects
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Figure 4. Reflection coefficient for different Fermi energies EF in the reservoirs. The parameters
used are a = 150 nm; R = 135 nm; L = 1.5 μm; the screening gate is absent.

both the width of the transmission resonances (the width of the resonance decreases with D)
and the reflection coefficient at energies between the resonances (|r |2 increases with D), the
resonance energies being weakly dependent on D. Similarly, the Fermi level in the reservoirs
weakly affects the position of the resonance, while |r |2 is affected noticeably (figure 4).

The reflection resonances clearly point to the presence of quasi-bound states located in
the region of the potential landscape maximum. The spectrum of the quasi-bound states
and the energy dependence of the backscattering may be described rather well by a simple
model. The electron scattering in 1D–2D junctions may be imagined as scattering by two δ-
like barriers located symmetrically at a distance l from the QW centre. The scattering potential
is W (x) = �δ(x ± l). Here l and � are fitting parameters. The wavevector K , for which the
backscattering vanishes, is defined by the equation

tan(2Kl) = −2K h̄2

2m�
.

Using the ratio of energies of the sequential resonances in our numerical results, we can define
the serial numbers of the resonances. Then, choosing the distance l properly, we can fit the
resonance energies. The fitting leads to a simple equation:

2l = 2a + γ R,

where γ is a parameter (γ � 0.5), which only slightly depends on the device geometry
and the Fermi level in the reservoirs. The variation of the distance D and the background
positive charge density affect the power � of the effective scattering potential, which affects
the resonance energies slightly.

Thus, we have shown that the interaction between the electrons of the different subbands in
1D–2D junctions essentially affects the electron transport in QPCs and QWs. This interaction
results in the transmission resonances which clearly evidence the formation of quasi-bound
states in the region of the potential landscape maximum.
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